
Probab. Theory Relat. Fields
DOI 10.1007/s00440-017-0783-z

Intermittency for the stochastic heat equation driven
by a rough time fractional Gaussian noise

Le Chen1 · Yaozhong Hu1 · Kamran Kalbasi2 ·
David Nualart1

Received: 18 February 2016 / Revised: 5 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract This paper studies the stochastic heat equation driven by time fractional
Gaussian noise with Hurst parameter H ∈ (0, 1/2). We establish the Feynman–Kac
representation of the solution and use this representation to obtain matching lower and
upper bounds for the L p(�) moments of the solution.
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1 Introduction

As pointed out by Zel′dovich et al. [20, p. 237], intermittency is a universal phe-
nomenon provided that a random field is of multiplicative type. Intermittency is
characterized by enormous growth rates of moments of the random field and it has
been intensively studied in the past two decades for stochastic partial differential equa-
tions of various kinds; see, e.g., [1–7,9]. These growth rates both depend on the noise
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structures [1,9] and also on the partial differential operators [5,7]. In the literature, the
noise is either white in time [2–7] or more regular than the white noise [1,9]. Little
is known about the intermittency for the case when the noise in time is rougher than
the white noise. This latter fact motivates this current investigation. In particular, we
will study in this paper the intermittency property for the following stochastic heat
equation subject to a noise which is rougher than the white noise in time,

⎧
⎨

⎩

∂

∂t
u(t, x) = 1

2
�u(t, x) + u(t, x)

∂

∂t
W (t, x), t > 0, x ∈ R

d ,

u(0, x) = u0(x),
(1.1)

where u0 is a bounded measurable function. W = {W (t, x), t ≥ 0, x ∈ R
d} is

a Gaussian random field, which is fractional Brownian motion of Hurst parameter
H ∈ (0, 1/2) in time and has correlation in space given by Q(x, y):

E [W (t, x)W (s, y)] = 1

2

(
t2H + s2H − |t − s|2H

)
Q(x, y).

We assume that Q(x, y) satisfies the following two conditions:

(H1) There exist some constants α ∈ (0, 1] and C0 > 0 such that

Q(x, x) + Q(y, y) − 2Q(x, y) ≤ C0|x − y|2α, for all x and y ∈ R
d . (H1)

(H2) There exist some constants β ∈ [0, 1) and C2 > 0 such that for all M > 0,

Q(x, y) ≥ C2M2β, for all x, y ∈ R
d with min

i=1,...,d
(|xi | ∧ |yi |) > M, (H2)

where a ∧ b := min(a, b).

It is known thatFeynman–Kac formula/representation for the solution is a powerful
tool for studying the moments of the solution; see [3,6,9]. Hence, the first challenging
problem in this paper is to establish the following Feynman–Kac formula for the
solution to (1.1):

u(t, x) = E
B
[

u0(Bx
t ) exp

∫ t

0
W (ds, Bx

t−s)

]

, (1.2)

where B = {
Bx

t = Bt + x, t ≥ 0, x ∈ R
d
}
is a d-dimensional Brownian motion

starting from x ∈ R
d , independent of W , and the expectation is with respect to the

Brownian motion. Hu et al. [11] established this representation (1.2) for the case
where H ∈ (1/4, 1/2). In this paper we will improve their results by allowing the
Hurst parameter H to be any value in (0, 1/2). More precisely, we will show that, for
any H ∈ (0, 1/2), if condition (H1) holds and 2H + α > 1, then the solution to (1.1)
is given by (1.2).

We interpret the solution (1.2) in the weak form, where the integral, instead of being
a pathwise integral, is a nonlinear stochastic integral in the Stratonovich sense; see
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Definition 3.5 below for the precise definition and see also the recent work by Hu and
Lê [10] for the case H > 1/2. We remark that for H > 1/2 the uniqueness of the
solution can be proved using Young’s integral; see, e.g., Section 5.2 of [9]. For the
current case, this might be done using the rough path analysis, but we will not pursue
this property in this paper.

Using this representation (1.2), we are able to show that for some nonnegative
constants C , C , Cx and C x , the solution to (1.1) satisfies the following moment
bounds

C x exp

(

Ck
2−β
1−β t

2H+β
1−β

)

≤ E

[
u(t, x)k

]
≤ Cx exp

(

Ck
2−α
1−α t

2H+α
1−α

)

(1.3)

for all t ≥ 1 and k ∈ N, where we need to assume condition (H2) and infx∈Rd u0(x) >

0 to establish the lower bound. When α = β (see Remark 1.1 below for one example),
our exponents in (1.3) are sharp in the sense that one can define the moment Lyapunov
exponents

mk(x) := lim sup
t→+∞

t−
2H+α
1−α logE

[
u(t, x)k

]
and

mk(x) := lim inf
t→+∞ t−

2H+α
1−α logE

[
u(t, x)k

]
,

and establish easily from (1.3) that

Ck
2−α
1−α ≤ inf

x∈Rd
mk(x) ≤ sup

x∈Rd
mk(x) ≤ Ck

2−α
1−α , for all k ≥ 2. (1.4)

Therefore, this solution is fully intermittent [3, Definition III.1.1].

Remark 1.1 If d = 1 and Q(x, y) is the covariance of a fractional Brownian motion
{ B�

x , x ∈ R} with Hurst parameter � ∈ (0, 1), i.e.,

Q(x, y) = E

[
B�

x B�
y

]
= 1

2

(
|x |2� + |y|2� − |x − y|2�

)
,

then it is easy to see that both conditions (H1) and (H2) are satisfied with α = β = �

and (1.3) becomes

C x exp
(

C k
2−�
1−� t

2H+�
1−�

)
≤ E

[
u(t, x)k

]
≤ Cx exp

(
C k

2−�
1−� t

2H+�
1−�

)
. (1.5)

The proofs of both upper and lower bounds in (1.3) use the Feynman–Kac rep-
resentation (1.2). While the proof of the upper bound follows from some standard
arguments, the proof of the lower bond is more involved and it is very different from
that of the upper bound. We will use a representation of Q as the covariance function
of a Gaussian process and then apply an moment inequality, by Mémin et al. [15], for
the related stochastic integral; see Lemma 4.3 below. Note that, since this inequality
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holds only in one direction, this technique is valid only for establishing the lower
bound.

There is an extensive literature on the Feynman–Kac formula for stochastic partial
differential equations under various random potentials. We refer interested readers
to the references in [11–13]. Hu et al. [13] proved that if the random potential
W = {W (t, x), t ≥ 0, x ∈ R

d} is a fractional Brownian sheet with Hurst param-
eter (H0, H1, . . . , Hd) that satisfies

Hi ∈ (1/2, 1), i = 1, . . . , d, and 2H0 +
d∑

i=1

Hi > d + 1, (1.6)

then the solution to the following stochastic heat equation

⎧
⎨

⎩

∂

∂t
u(t, x) = 1

2
�u(t, x) + u(t, x)

∂d+1

∂t∂x1 · · · ∂xd
W (t, x), t > 0, x ∈ R

d ,

u(0, x) = u0(x),

(1.7)

admits a Feynman–Kac representation

u(t, x) = E
B
[

u0(Bx
t ) exp

(∫ t

0

∫

Rd
δ
(
Bx

t−s − y
)

W (ds, dy)

)]

,

where B is a d-dimensional Brownian motion (the same as B in (1.2)), independent
of W . In this framework, condition (1.6) implies that H0 > 1/2.

In order to handle the case where H0 < 1/2, one may impose better spatial
correlations. When H0 ∈ (1/4, 1/2), Hu et al. [11] established the Feynman–Kac rep-
resentation for (1.2) with a similar spatial covariance Q(x, y) that satisfies a growth
condition (see (H3) below) and is locally γ -Hölder continuous with γ > 2 − 4H0.
Notice that the fact that Q is a covariance function implies that there exists a Gaussian
process Y = {Y (x), x ∈ R

d} such that Q(x, y) = E[Y (x)Y (y)]. Then it is natural to
assume some sample path regularity of Y through the following condition

E

[
(Y (x) − Y (y))2

]
≤ C0|x − y|2α. (H1’)

Because Y is Gaussian, (H1’) implies that Y is a.s. γ -Hölder continuous for all
γ < α. Clearly the two conditions (H1’) and (H1) are equivalent. Then under (H1)
(or equivalently (H1’)), we are able to establish the Feynman–Kac formula for any
H0 ∈ ((1 − α)/2, 1/2). Note that α can be arbitrarily close to one by choosing Q
properly; see Remark 1.1 for an example.

The above representation of Q using Y implies a growth condition of Q, which is
listed below for the convenience of later reference,

(H3) There exists a constant C1 > 0 such that for all M > 0,

|Q(x, y)| ≤ C1(1 + M)2α, for all x, y ∈ R
d with |x |, |y| ≤ M. (H3)
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Intermittency for the stochastic heat equation driven by a . . .

When the spaceRd is replaced byZd in (1.1), theBrownianmotion B in (1.2) should
be replaced by a locally constant random walk. Kalbasi and Mountford [14] recently
studied this case and established the Feynman–Kac formula for any H0 ∈ (0, 1).

It is interesting, even formally, to compare the exponents obtained in this work
with the previous ones. Hu et al. [9] recently studied (1.7) with the noise having the
following covariance form

E
[
Ẇ (t, x)Ẇ (s, y)

] = γ (t − s)
(x − y), (1.8)

where Ẇ := ∂d+1 W
∂t∂x1···∂xd

; see also a closely related work by Balan and Conus [1]. Under
the condition that for some constants c0, C0, c1, C1, κ ∈ (0, 1) and σ ∈ (0, 2),

c0|t |−κ ≤ γ (t) ≤ C0|t |−κ and c1|x |−σ ≤ 
(x) ≤ C1|x |−σ , (1.9)

it is proved in [9] that

C exp
(

C k
4−σ
2−σ t

4−2κ−σ
2−σ

)
≤ E

[
u(t, x)k

]
≤ C exp

(
C k

4−σ
2−σ t

4−2κ−σ
2−σ

)
. (1.10)

The noises for both equations (1.1) and (1.7) (with noise (1.8)) are similar in time. Our
noise formally corresponds to the case κ = 2 − 2H , where the condition κ ∈ (0, 1)
imposed in [9], implies that H ∈ (1/2, 1). However, after substituting κ by 2 − 2H
in the exponents of (1.10) and comparing the following two exponents,

k
2−α
1−α t

2H+α
1−α in (1.3)

︸ ︷︷ ︸
(1−α)/2<H<1/2

and k
2−σ/2
1−σ/2 t

2H−σ/2
1−σ/2 in (1.10),

︸ ︷︷ ︸
1/2<H<1

we immediately see a mismatch of the sign in the exponent of t if one takes
σ = 2α. In both cases, no matter whether H > 1/2 (the positive correla-
tion case) or H < 1/2 (the negative correlation case), the larger value the
parameter H has, the more correlations the noise produces, and the larger expo-
nent of t we have and hence the larger moment we obtain. If we formally take
H = 1/2 in both cases, we have t (1+α)/(1−α) for (1.3) and t for (1.10), where
the latter case is what one usually expects for a noise that is white in time. Nev-
ertheless, this mismatch of the sign makes the exponent of t in our case always
bigger than one. This discrepancy is due to the different natures of these two
noises in space. Our noise in space is nonhomogeneous and the function x 	→
Q(x, x) is finite at the origin but has a growth rate at infinity. On the other
hand, the noise with 
 in (1.8) is homogeneous and it is singular at the origin
but decreases to zero at infinity. Nevertheless, in both cases, the exponents of k
depend only on the spatial correlations. Moreover, when σ = 1 (noise is white
in space for (1.7)) and � = 1/2 in (1.5) (the case when Q is a correlation
function of a Brownian motion; see Remark 1.1), both exponents of k are equal
to 3.
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Throughout this paper, denote αH = 2H(2H − 1), which is negative for H ∈
(0, 1/2). For t, s ∈ R, denote

RH (t, s) := 1

2

(
|t |2H + |s|2H − |t − s|2H

)
. (1.11)

Let ||·||κ be the κ-Hölder norm and Cκ([0, T ]) be the set of κ-Hölder continuous
functions on [0, T ].

This paper is organized as follows: In Sect. 2, we define the stochastic integral in
(1.2) through approximation and derive some properties of this stochastic integral. In
Sect. 3, we first make sense of expression (1.2) by showing that the stochastic integral
in (1.2) has exponential moments. As a consequence, we derive the upper bound of
(1.3). Then we validate that (1.2) is a weak solution to (1.1). The lower bound in
(1.3) is proved in Sect. 4. Finally, some technical lemmas are proved or listed in
“Appendix”.

2 Stochastic integral with respect to W

In this section, we introduce the stochastic integral with respect to W that appears in
(1.2) and prove some useful properties. The integral is defined through an approxima-
tion scheme, which requires an extension of the noise W from t ≥ 0 to t ∈ R, i.e.,
W = {W (t, x), t ∈ R, x ∈ R

d} is a mean zero Gaussian process with the following
covariance

E [W (t, x)W (s, y)] = RH (t, s)Q(x, y), for all t, s ∈ R and x, y ∈ R
d .

Definition 2.1 Given a continuous function φ : [0, T ] 	→ R
d , define

∫ t

0
W (ds, φs) := lim

ε→0

∫ t

0
Ẇ ε(s, φs)ds,

if the limit exists in L2(�), where

Ẇ ε(s, x) = (2ε)−1 (W (s + ε, x) − W (s − ε, x)) . (2.1)

The aim of this section is to prove the following Theorem 2.2 and Proposition 2.4.
Denote

Q̂(u, v, φ,ψ) = 1

2
[Q(φu, ψu) + Q(φv, ψv) − Q(φu, ψv) − Q(φv, ψu)] .

Theorem 2.2 Assume that Q satisfies condition (H1). Then for all 0 < t ≤ T and
φ, ψ ∈ Cκ([0, T ]) with ακ+ H > 1/2, the stochastic integral It (φ) := ∫ t

0 W (ds, φs)

exists and
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Intermittency for the stochastic heat equation driven by a . . .

E [It (φ)It (ψ)] = H
∫ t

0
θ2H−1 [Q(φθ , ψθ ) + Q(φt−θ , ψt−θ )

]
dθ

− αH

∫ t

0

∫ θ

0
r2H−2 Q̂(θ, θ − r, φ, ψ)drdθ. (2.2)

Moreover,

|E [It (φ)It (ψ)]| ≤H
∫ t

0
θ2H−1 [Q(φθ , ψθ ) + Q(φt−θ , ψt−θ )

]
dθ

+ |αH |C0

2

∫ t

0

∫ θ

0
r2H−2|φθ − φθ−r |α|ψθ − ψθ−r |αdrdθ

(2.3)

≤ Cφ,ψ t2(H+ακ) + C∗
φ,ψ t2H , (2.4)

where

Cφ,ψ := H(1 − 2H)C0 ||φ||ακ ||ψ ||ακ
2(H + ακ)(2(H + ακ) − 1)

and C∗
φ,ψ := C1

(
1 + ||φ||∞ ∨ ||ψ ||∞

)2α
,

and the constants C0 and C1 are defined in (H1) and (H3), respectively.

Remark 2.3 By symmetry,

∫ t

0

∫ θ

0
r2H−2 Q̂(θ, θ − r, φ, ψ)drdθ = 1

2

∫ t

0

∫ t

0
|u − v|2H−2 Q̂(u, v, φ,ψ)dudv.

(2.5)

Therefore, (2.2) can be equivalently written as

E[It (φ)It (ψ)] = H
∫ t

0
Q(φs, ψs)

[
s2H−1 + (t − s)2H−1

]
ds

+ |αH |
2

∫ t

0

∫ t

0
|u − v|2H−2 Q̂(u, v, φ,ψ)dudv, (2.6)

and similarly,

∫ t

0

∫ θ

0
r2H−2|φθ − φθ−r |α|ψθ − ψθ−r |αdrdθ

= 1

2

∫ t

0

∫ t

0
|u − v|2H−2|φu − φv|α|ψu − ψv|αdudv. (2.7)
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Proposition 2.4 Suppose φ ∈ Cκ([0, T ]) with ακ + H > 1/2. Then for all 0 ≤ s <

t ≤ T ,

E

[(∫ t

0
W (dr, φr ) −

∫ s

0
W (dr, φr )

)2
]

≤ C ′ (1 + ||φ||∞
)2α

(t − s)2H

+ C ′′ ||φ||2ακ (t − s)2(H+ακ), (2.8)

where the constants C ′ and C ′′ depend on H, T , α and κ . As a consequence, the process
Xt = ∫ t

0 W (dr, φr ) is almost surely (H − ε)-Hölder continuous for any ε > 0.

The proofs of Theorem 2.2 and Proposition 2.4 require some lemmas. Denote

It,ε(φ) =
∫ t

0
Ẇ ε(s, φs)ds.

By (3.2) of [11], for φ,ψ ∈ C([0, T ]),

E
[
It,ε(φ)It,δ(ψ)

] =
∫ t

0

∫ t

0
Q(φu, ψv)V 2H

ε,δ (u − v)dudv

= 1

2

∫ t

0

∫ θ

0

[
Q(φθ , ψθ−r ) + Q(φθ−r , ψθ )

]
V 2H

ε,δ (r)drdθ,

(2.9)
where

V 2H
ε,δ (r) = 1

4εδ

(
|r + ε + δ|2H + |r − ε − δ|2H − |r − ε + δ|2H − |r + ε − δ|2H

)
.

(2.10)

Lemma 2.5 There is some constant CH > 0 such that for all r > 0, ε ≥ δ > 0,

V 2H
ε,δ (r)1[4ε,+∞)(r) ≤ CH r2H−2.

Proof Because r ≥ 4ε ≥ 2(ε + δ), we see that r ± ε ± δ > 0 and

V 2H
ε,δ (r) = 1

4

∫ 1

−1

∫ 1

−1
αH (r + ηε + ξδ)2H−2dξdη.

Because

(r + ηε + ξδ)2H−2 =
(

1 + ηε + ξδ

r

)2H−2

r2H−2 ≤
(

1 − ε + δ

r

)2H−2

r2H−2

≤
(

1 − 1

2

)2H−2

r2H−2 = 22−2H r2H−2,

we have that V 2H
ε,δ (r) ≤ 23−2H H(2H − 1)r2H−2. This proves Lemma 2.5. �
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Lemma 2.6 If ψ : [0, T ] 	→ R is a bounded function, then either for ψ̂(t, θ) = ψ(θ)

or for ψ̂(t, θ) = ψ(t − θ), we have that

∣
∣
∣
∣

∫ t

0
dθ ψ̂(t, θ)

∫ θ

0
dr V 2H

ε,δ (r) − 2H
∫ t

0
ψ̂(t, θ)θ2H−1dθ

∣
∣
∣
∣ ≤ 4 ||ψ ||∞ (ε + δ)2H .

(2.11)

Proof The case ψ̂(t, θ) = ψ(θ) is proved by Hu, Lu and Nualart in [11, Lemma 3.2].
Their arguments can be easily extended to the case ψ̂(t, θ) = ψ(t − θ). �
Lemma 2.7 For some constant C0 > 0 and some α ∈ (0, 1], (H1) holds if and only if

|Q(x, u) + Q(y, w) − Q(x, w) − Q(y, u)| ≤ C0|x − y|α|u − w|α, (2.12)

for all x, y, w, u ∈ R
d .

Proof Since Q is a covariance function, one can find a process {Yx , x ∈ R
d} such that

Q(x, y) = E[Yx Yy]. Then the left-hand side of (H1) is equal toE[(Yx −Yy)
2] and the

left-hand side of (2.12) is equal to |E[(Yx − Yy)(Yu − Yw)]|. With this representation,
the equivalence between (H1) and (2.12) is clear by the Cauchy–Schwarz inequality.

�
Proof of Theorem 2.2 Throughout the proof, we use C to denote a generic constant
which may vary from line to line. Notice that

1

2

[
Q(φθ , ψθ−r ) + Q(φθ−r , ψθ )

] = −Q̂(θ, θ − r, φ, ψ)

+ 1

2

[
Q(φθ , ψθ ) + Q(φθ−r , ψθ−r )

]
. (2.13)

By (2.12) and by the Hölder continuity of φ and ψ , we see that

∣
∣Q̂(θ, θ − r, φ, ψ)

∣
∣ ≤ C0

2
|φθ − φθ−r |α|ψθ − ψθ−r |α ≤ C0

2
||φ||ακ ||ψ ||ακ r2ακ ,

(2.14)

for all 0 ≤ r ≤ θ ≤ T . Hence, using (2.9) and (2.13),

∣
∣
∣
∣E
[
It,ε(φ)It,δ(ψ)

]+ αH

∫ t

0

∫ θ

0
r2H−2 Q̂(θ, θ − r, φ, ψ)drdθ

− H
∫ t

0
θ2H−1 [Q(φθ , ψθ ) + Q(φt−θ , ψt−θ )

]
dθ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

0

∫ θ

0
Q̂(θ, θ − r, φ, ψ)

(
V 2H

ε,δ (r) − αH r2H−2
)
drdθ

∣
∣
∣
∣

+ 1

2

∣
∣
∣
∣

∫ t

0

∫ θ

0
Q(φθ , ψθ )V 2H

ε,δ (r)drdθ − 2H
∫ t

0
θ2H−1Q(φθ , ψθ )dθ

∣
∣
∣
∣
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+ 1

2

∣
∣
∣
∣

∫ t

0

∫ θ

0
Q(φθ−r , ψθ−r )V 2H

ε,δ (r)drdθ − 2H
∫ t

0
θ2H−1Q(φt−θ , ψt−θ )dθ

∣
∣
∣
∣

=: I1 + I2
2

+ I3
2

.

We claim that

lim
ε,δ→0

Ii = 0, i = 1, 2, 3. (2.15)

Therefore, we have that

lim
ε,δ→0

E
[
It,ε(φ)It,δ(ψ)

] = H
∫ t

0
θ2H−1 [Q(φθ , ψθ ) + Q(φt−θ , ψt−θ )

]
dθ

− αH

∫ t

0

∫ θ

0
r2H−2 Q̂(θ, θ − r, φ, ψ)drdθ. (2.16)

When ψ = φ, this implies that {It,εn (φ), n ≥ 1} is a Cauchy sequence in L2(�)

for any sequence εn ↓ 0. Therefore, limε→0 It,ε(φ) exists in L2(�) and is denoted
by It (φ) := ∫ t

0 W (ds, φs). Formula (2.2) is a consequence of (2.16). As for moment
bound (2.4), by (H3) and (2.14),

|E[It (φ)It (ψ)]| ≤ |αH |C0

2
||φ||ακ ||ψ ||ακ

∫ t

0

∫ θ

0
r2ακ+2H−2drdθ

+ C1
(
1 + ||φ||∞ ∨ ||ψ ||∞

)2α
(2H)

∫ t

0
θ2H−1dθ

= C0|αH | ||φ||ακ ||ψ ||ακ t2(H+ακ)

4(H +ακ)(2(H +ακ)−1)
+C1(1+||φ||∞ ∨ ||ψ ||∞)2αt2H .

Therefore, it remains to prove (2.15), which will be done in the following two steps.
�

Step 1. We first prove (2.15) for I1. Notice that I1 can be decomposed as

I1 ≤
∣
∣
∣
∣

∫ t

0

∫ θ

4ε
Q̂(θ, θ − r, φ, ψ)

(
V 2H

ε,δ (r) − αH r2H−2
)
drdθ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

∫ 4ε

0
Q̂(θ, θ − r, φ, ψ)

(
V 2H

ε,δ (r) − αH r2H−2
)
drdθ

∣
∣
∣
∣

=: I1,1 + I1,2.

Notice that for r > 0,

lim
ε,δ→0

V 2H
ε,δ (r) = αH r2H−2.

Because H + ακ > 1/2, by Lemma 2.5 and (2.14), we can apply dominated conver-
gence theorem to see that
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lim
ε,δ→0

I1,1 = 0.

As for I1,2, we see that

I1,2 =
∣
∣
∣
∣

∫ t

0
dθ
∫ 4ε

0
Q̂(θ, θ − r, φ, ψ)

(
V 2H

ε,δ (r) − αH r2H−2
)
dr

∣
∣
∣
∣

≤ C

ε

∫ t

0
dθ
∫ 4ε

0
dr
∣
∣Q̂(θ, θ − r, φ, ψ)

∣
∣

×
∫ 1

−1
dy
[
|r − ε + δy|2H−1 + |r + ε + δy|2H−1 + εr2H−2

]
.

Then by (2.14),

I1,2 ≤ C ||φ||ακ ||ψ ||ακ t

ε

∫ 4ε

0
dr r2ακ

∫ 1

−1
dy

×
[
|r − ε + δy|2H−1 + |r + ε + δy|2H−1 + εr2H−2

]

≤C ||φ||ακ ||ψ ||ακ t ε2ακ−1
∫ 1

−1
dy
∫ 4ε

0
dr

×
[
|r − ε + δy|2H−1 + |r + ε + δy|2H−1 + εr2H−2

]
.

Because ε > δ > 0 and y ∈ [−1, 1], we have that
∫ 4ε

0
dr
[
|r + ε + δy|2H−1 + εr2H−2

]
=
∫ 4ε

0
dr
[
(r + ε + δy)2H−1 + εr2H−2

]

≤ C[(5ε + δy)2H + ε2H ] ≤ C ε2H ;

and because ε − δy ∈ [0, 4ε], we see that
∫ 4ε

0
dr |r −ε+δy|2H−1 =

∫ ε−δy

0
dr (ε − δy − r)2H−1+

∫ 4ε

ε−δy
dr (r − ε + δy)2H−1

= 1

2H

[
(ε − δy)2H + (3ε + δy)2H

]
≤ C ε2H .

Hence,

I1,2 ≤ C ||φ||ακ ||ψ ||ακ t ε2ακ−1+2H .

Therefore, the condition ακ + H ≥ 1/2 implies

lim
ε,δ→0

I1,2 = 0.
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Step 2. Now we prove (2.15) for I2 and I3. The case for I2 is true due to Lemma 2.6.
As for I3, notice that

∫ t

0
dθ
∫ θ

0
dr Q(φθ−r , ψθ−r )V 2H

ε,δ (r) =
∫ t

0
dr V 2H

ε,δ (r)

∫ t

r
dθ Q(φθ−r , ψθ−r )

=
∫ t

0
dr V 2H

ε,δ (r)

∫ t−r

0
ds Q(φs, ψs)

=
∫ t

0
ds Q(φs, ψs)

∫ t−s

0
dr V 2H

ε,δ (r)

=
∫ t

0
dθ Q(φt−θ , ψt−θ )

∫ θ

0
dr V 2H

ε,δ (r).

Hence, one can apply Lemma 2.6 to prove (2.15) for I3. This completes the proof of
Theorem 2.2. �
Proof of Proposition 2.4 We only need to prove that

E

[(∫ t

0
Ẇ ε(dr, φr ) −

∫ s

0
Ẇ ε(dr, φr )

)2
]

≤ C ′ (1 + ||φ||∞
)2α

(t − s)2H

+ C ′′ ||φ||2ακ (t − s)2(H+ακ). (2.17)

Then (2.8) follows from (2.17), Theorem 2.2, and Fatou’s lemma. By the arguments
in the proof of [11, Proposition 3.6] and by denoting φ̂t = φt+s , we see that

E

[(∫ t

0
Ẇ ε(dr, φr )−

∫ s

0
Ẇ ε(dr, φr )

)2
]

=
∫ t−s

0
dθ
∫ θ

0
dr Q(φs+θ , φs+θ−r )V 2H

ε,ε (r)

=
∫ t−s

0
dθ
∫ θ

0
dr Q(φ̂θ , φ̂θ−r )V 2H

ε,ε (r)

=
∫ t−s

0

∫ t−s

0
Q(φ̂u , φ̂v)V 2H

ε,ε (u − v)dudv

= E

[
I 2t−s,ε(φ̂)

]
,

where the last equality is due to (2.9). Finally, after passing to the limit using (2.16)
and then applying the bound in (2.4), we complete the proof of Proposition 2.4. �

3 Feynman–Kac formula and upper bound of moments

In this section, we will establish the Feynman–Kac representation of the solution to
(1.1) and obtain a upper bound of its moments.

3.1 Feynman–Kac integral and its moment bound

The goal of this part is to prove the upper bound in (1.3).
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Theorem 3.1 Suppose that Q satisfies condition (H1) with 2H + α > 1 and u0
is bounded. Then for all t > 0 and x ∈ R

d , the random variable
∫ t
0 W (ds, Bx

t−s)

is exponentially integrable and the random field u(t, x) given by (1.2) is in L p(�)

for all p ≥ 1. Moreover, for some constants C = C (d, H, α, ||u0||∞) > 0 and
Cx = Cx (d, H, α, ||u0||∞ , x) > 0,

E

[
|u(t, x)|k

]
≤ Cx exp

(
Ck

2−α
1−α t

2H+α
1−α

)
,

for all t ≥ 1, x ∈ R
d and k ∈ N.

Notice that since the trajectories of the Brownian motion {Bx
t , t ≥ 0} are Hölder

continuous of order κ for any κ < 1/2, the stochastic integral
∫ t
0 W

(
ds, Bx

t−s

)
is well

defined due to Theorem 2.2. We first prove some lemmas.

Lemma 3.2 Suppose that α ∈ (0, 1] and 2H + α > 1. Let

U =
∫ 1

0

∫ 1

0
|Bu − Bv|2α|u − v|2H−2dudv, (3.1)

where Bt is a standard Brownian motion on R
d . Then for some constant Cα,d,H > 0,

E

[
eλU
]

≤ Cα,d,H exp
(

Cα,d,H λ
1

1−α

)
, for all λ ≥ 0.

Proof Notice that

E

[
|Bu − Bv|2αn

]
= E

[
|Bu−v|2αn

]
= |u − v|αn

E

[
|B1|2αn

]

= Cd2
αn�(d/2 + nα)|u − v|αn .

By Minkovski’s inequality,

E[U n] ≤
[∫ 1

0

∫ 1

0
E

[
|Bu − Bv|2αn

]1/n |u − v|2H−2dudv

]n

=
[∫ 1

0

∫ 1

0

[
Cd2

αn|u − v|αn�(d/2 + αn)
]1/n |u − v|2H−2dudv

]n

= Cd2
αnϒn�(d/2 + αn),

where

ϒ :=
∫ 1

0

∫ 1

0
|u − v|2H−2+αdudv = 2

(2H + α − 1)(2H + α)
.

By Lemma 4.4, we see that for some constant Cα,d > 0,

�(d/2 + αn)

n! ≤ Cα,d

�((3 − d)/2 + (1 − α)n)
, for all n ∈ N.
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Notice that d ≥ 1 implies that (3 − d)/2 ≤ 1. Hence, by Lemma 4.6, we see that for
some constant Cα,d,H ≥ 1,

E[eλU ] =
∞∑

n=0

λn

n! E[U n] ≤
∞∑

n=0

λn

n! Cd 2αnϒn�(d/2 + αn)

≤ Cα,d

∞∑

n=0

λn2αnϒn

�((3 − d)/2 + (1 − α)n)

≤ Cα,d,H exp
(

Cα,d,H λ
1

1−α [2αϒ] 1
1−α

)
,

for λ ≥ 0. This proves Lemma 3.2. �
Lemma 3.3 Let Bt be a standard Brownian motion on R

d and W = sups∈[0,1] |Bs |.
Then for all α ∈ [0, 1), there exists some constant Cα,d > 0 such that

E

[
eλ(1+W )2α

]
≤ Cα,d exp

(
Cα,d λ

1
1−α

)
, for all λ ≥ 0.

Proof By Fernique’s theorem (see, e.g., [8, Theorem 4.14]), for some βd > 0 it holds
that

E exp
(
βW 2

)
< ∞ for all β < βd .

Apply the inequality ab ≤ p−1a p + q−1bq where a, b ≥ 0 and 1/p + 1/q = 1 to
see that

E

[
eλ(1+W )2α

]
≤ E

[

e
p−1

(
λ
a

)p+q−1aq (1+W )2αq
]

.

Then the lemma is proved by choosing q = 1/α, p = 1/(1 − α) and a sufficiently
small such that q−1aq < βd . �
Proof of Theorem 3.1 Let u(t, x) be the random field given by (1.2). Without of loss
of generality, we may assume that u0(x) ≡ 1. Notice that

E

[
u(t, x)k

]
= E

W
E

B exp

⎧
⎨

⎩

k∑

j=1

∫ t

0
W
(
ds, B j,x

t−s

)
⎫
⎬

⎭

= E
B exp

⎧
⎪⎨

⎪⎩

1

2
E

W

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

k∑

j=1

∫ t

0
W
(
ds, B j,x

t−s

)
∣
∣
∣
∣
∣
∣

2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

= E
B exp

⎧
⎨

⎩

1

2

k∑

i, j=1

E
W
[∫ t

0
W
(
ds, Bi,x

t−s

) ∫ t

0
W
(
ds, B j,x

t−s

)]
⎫
⎬

⎭
,

(3.2)
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where {B j,x
t , t ≥ 0}, 1 ≤ j ≤ k, are independent Brownian motions on R

d starting
from x . By (2.3),

E

[
u(t, x)k

]
≤ E

B exp

⎧
⎨

⎩

k∑

i, j=1

C0|αH |
4

∫ t

0

∫ t

0

∣
∣
∣Bi,x

u − Bi,x
v

∣
∣
∣
α

×
∣
∣
∣B

j,x
u − B j,x

v

∣
∣
∣
α |u − v|2H−2dudv

+ H

2

k∑

i, j=1

∫ t

0
θ2H−1

[
Q
(

Bi,x
θ , B j,x

θ

)
+ Q

(
Bi,x

t−θ , B j,x
t−θ

)]
dθ

⎫
⎬

⎭
.

Then by Cauchy–Schwarz inequality,

E

[
u(t, x)k

]
≤E

B

⎡

⎣exp

⎧
⎨

⎩

k∑

i, j=1

C0|αH |
2

∫ t

0

∫ t

0

∣
∣
∣Bi,x

u − Bi,x
v

∣
∣
∣
α ∣∣
∣B

j,x
u

−B j,x
v

∣
∣
∣
α |u − v|2H−2dudv

⎫
⎬

⎭

⎤

⎦

1/2

× E
B

⎡

⎣exp

⎧
⎨

⎩
H

k∑

i, j=1

∫ t

0
θ2H−1

[
Q
(

Bi,x
θ , B j,x

θ

)

+Q
(

Bi,x
t−θ , B j,x

t−θ

)]
dθ

⎫
⎬

⎭

⎤

⎦

1/2

=:
(
E

B [I1]E
B [I2]

)1/2
.

Step 1. We first consider EB [I1]:

E
B [I1] ≤ E

B exp

⎧
⎨

⎩

k∑

i, j=1

C0|αH |
4

∫ t

0

∫ t

0

[∣
∣
∣Bi,x

u − Bi,x
v

∣
∣
∣
2α +

∣
∣
∣B

j,x
u − B j,x

v

∣
∣
∣
2α
]

|u

−v|2H−2dudv

⎫
⎬

⎭

= E
B exp

{

2−1C0k
k∑

i=1

|αH |
∫ t

0

∫ t

0

∣
∣
∣Bi,x

u − Bi,x
v

∣
∣
∣
2α |u − v|2H−2dudv

}

=
[

E
B exp

(

2−1C0k|αH |
∫ t

0

∫ t

0
|Bu − Bv|2α|u − v|2H−2dudv

)]k

,
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where {Bt , t ≥ 0} in the last line is a standard Brownian montion on R
d . By change

of variables u = tu′ and v = tv′ and by the scaling property of Brownian motions,
∫ t

0

∫ t

0
|Bu − Bv |2α |u − v|2H−2dudv = t2H

∫ 1

0

∫ 1

0
|Btu′ − Btv′ |2α |u′ − v′|2H−2du′dv′

in law= t2H+α
∫ 1

0

∫ 1

0
|Bu′ − Bv′ |2α |u′ − v′|2H−2du′dv′.

Hence,

E
B exp

(

2−1C0k|αH |
∫ t

0

∫ t

0
|Bu − Bv|2α|u − v|2H−2dudv

)

= E
B exp

(
2−1C0k|αH | t2H+αU

)
,

whereU is defined in (3.1). Then apply Lemma 3.2 toEB exp
(
2−1C0k|αH | t2H+αU

)

to see that for some constant Cα,d,H > 0,

E
B[I1]1/2 ≤ Cα,d,H exp

(
Cα,d,H k

2−α
1−α t

2H+α
1−α

)
, for all t ≥ 0.

Step 2. Now we study E B[I2]. Set
∣
∣
∣
∣Bi,x

∣
∣
∣
∣∞,t = sup0≤s≤t |Bi,x

s |. By condition (H3),

E[I2] ≤ E
B exp

⎛

⎝HC1

k∑

i, j=1

[(

1 +
∣
∣
∣

∣
∣
∣Bi,,x

∣
∣
∣

∣
∣
∣∞,t

)2α

+
(

1 +
∣
∣
∣

∣
∣
∣B j,x

∣
∣
∣

∣
∣
∣∞,t

)2α
]∫ t

0
θ2H−1dθ

⎞

⎠

≤ E
B exp

(

C1k t2H
k∑

i=1

(

1 +
∣
∣
∣

∣
∣
∣Bi,x

∣
∣
∣

∣
∣
∣∞,t

)2α
)

=
[
E

B exp
(

C1k t2H (1 + |x | + ||B||∞,t
)2α
)]k

,

where {Bt , t ≥ 0} in the last line is a standard Brownian motion onRd . By the scaling
property and t ≥ 1, we see that

E
B exp

(
C1k t2H (1 + |x | + ||B||∞,t

)2α
)

≤ E
B exp

(
C1k t2H+α

(
1 + |x | + ||B||∞,1

)2α
)

≤ exp
(

C ′
1k t2H+α|x |2α

)
E

B exp
(

C ′
1k t2H+α

(
1 + ||B||∞,1

)2α
)

.

By Lemma 3.3 with λ = C ′
1kt2H+α , we have that

E
B exp

(
C ′
1k t2H+α

(
1 + ||B||∞,1

)2α
)

≤ Cα,d exp
(

Cα,dk
1

1−α t
2H+α
1−α

)
.
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Then, by the fact that t ≥ 1 and k ≥ 1, we see that

Cα,d exp
(

Cα,dk
1

1−α t
2H+α
1−α

)
= exp

(
Cα,dk

1
1−α t

2H+α
1−α + logCα,d

)

≤ exp
(

C ′
α,dk

1
1−α t

2H+α
1−α

)
,

where one can choose C ′
α,d = Cα,d + log

(
Cα,d ∨ 1

)
. Therefore,

E[I2] ≤ exp
(

C ′
1k2 t2H+α|x |2α

)
exp

(
C ′

α,dk
2−α
1−α t

2H+α
1−α

)
.

By the inequality ab ≤ p−1a p + q−1bq with a = k2t2H+α , b = |x |2α , p = 2−α
2(1−α)

and q = 2−α
α

, we see that

exp
(

C ′
1k2 t2H+α|x |2α

)
≤ exp

(

C ′′
1 k

2−α
1−α t

(2H+α)(2−α)
2(1−α) + C ′′′

1 |x |2(2−α)

)

≤ exp
(

C ′′′
1 |x |2(2−α)

)
exp

(
C ′′
1 k

2−α
1−α t

2H+α
1−α

)

=: C ′
α,d,x exp

(
C ′′
1 k

2−α
1−α t

2H+α
1−α

)
,

where the second inequality is due to t ≥ 1. Therefore, for some constants Cα,d,x > 0
and Cα,d > 0,

E
B[I2]1/2 ≤ Cα,d,x exp

(
Cα,dk

2−α
1−α t

2H+α
1−α

)
for all t ≥ 1.

Finally, Theorem 3.1 is proved by combining the results in the above two steps. �

3.2 Validation of the Feynman–Kac formula

In this part we will show that u(t, x) is a weak solution to (1.1).

Definition 3.4 Given a random field v = {v(t, x), t ≥ 0, x ∈ R
d} such that

∫ t

0

∫

Rd
|v(s, x)|dxds < ∞ a.s. for all t > 0,

the Stratonovich integral is defined as the following limit in probability if it exists

lim
ε→0

∫ t

0

∫

Rd
v(s, x)Ẇ ε(s, x)dsdx,

where Ẇ ε(t, x) is defined in (2.1).
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Definition 3.5 A random field u = {u(t, x), t ≥ 0, x ∈ R
d} is a weak solution to

(1.1) if for any φ ∈ C∞
0 (Rd), we have that

∫

Rd
[u(t, x) − u0(x)]φ(x)dx =

∫ t

0

∫

Rd
u(s, x)�φ(x)dxds

+
∫ t

0

∫

Rd
u(s, x)φ(x)W (ds, x)dx,

(3.3)

almost surely, for all t > 0, where the last term is a Stratonovich stochastic integral
defined in (3.4).

Theorem 3.6 Suppose that Q satisfies condition (H1) with 2H + α > 1 and u0 is a
bounded measurable function. Let u(t, x) be the random field defined in (1.2). Then
for any φ ∈ C∞

0 (Rd), u(t, x)φ(x) is Stratonovich integrable and u(t, x) is a weak
solution to (1.1) in the sense of Definition 3.5.

With Theorems 2.2 and 3.1, and Proposition 2.4, the proof of Theorem 3.6 follows
exactly the same arguments as those of Theorem 5.3 in [11]. We will not repeat the
proofs and instead leave them to interested readers.

4 Lower bounds of moments

In this section, we prove the lower bound in (1.3).

Theorem 4.1 Suppose that Q satisfies condition (H1) with 2H + α > 1 and
infx∈Rd u0(x) > 0. If Q satisfies condition (H2) as well for some β ∈ [0, 1),
then there exist some constants C = C(d, H, α, β, inf x∈Rd u0(x)) > 0 and Cx =
Cx (d, H, α, β, inf x∈Rd u0(x), x) > 0, such that for all t ≥ 1, x ∈ R

d and k ∈ N,

E

[
u(t, x)k

]
≥ Cx exp

(

Ck
2−β
1−β t

2H+β
1−β

)

.

We first remark that if the initial data is u0(x) ≡ 1, then from (3.2) and (2.6), we
see that

E

[
u(t, x)k

]
= E

B exp

⎧
⎨

⎩

|αH |
2

k∑

i, j=1

∫ t

0

∫ t

0
|u − v|2H−2 Q̂

(
u, v, Bi,x , B j,x

)
dudv

+ H
k∑

i, j=1

∫ t

0
Q
(

Bi,x
s , Bi,x

s

) [
s2H−1 + (t − s)2H−1

]
ds

⎫
⎬

⎭
.

Since the sign of Q̂ can be either positive or negative, it is hard to find a lower bound
starting from the above formula. Instead, we will introduce another Gaussian field Y
as in Lemma 4.2 below.
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Now we need some notation. Fix a > 0. Let κ = H − 1/2. As is proved in [18],
the space

Ha =
{

f : ∃φ f ∈ L2(0, a) such that f (u) = u−κ
(
I −κ
a− φ f (s)

)
(u)
}

(4.1)

with the inner product

〈 f, g〉Ha
= πκ(2κ + 1)

�(1 − 2κ) sin(πκ)

∫ a

0
s−2κ (I κ

a−uκ f (u)
)
(s)
(
I κ
a−uκ g(u)

)
(s) ds

is a Hilbert space, where I κ
a− with κ < 0 is the right-sided fractional derivative (see

[18]). It is known that (see [16, p. 284])

Cγ ([0, a]) ⊂ Ha ⊂ L2(0, a), for all γ > 1/2 − H. (4.2)

Lemma 4.2 There exist a Gaussian process Y = {Y (x), x ∈ R
d} and an independent

fractional Brownian motion {B̂t , t ∈ R} with Hurst parameter H, such that

(a) For all x, y ∈ R
d , E[Y (x)Y (y)] = Q(x, y).

(b) For all 0 < t ≤ T and φ ∈ Cκ([0, T ]) with ακ + H > 1/2, the integral∫ t
0 Y (φs)d B̂s is a well-defined Wiener integral for each realization of Y . Moreover,

∫ t

0
Y (φs)d B̂s = lim

ε→0

1

2ε

∫ t

0
Y (φs)

(
B̂s+ε − B̂s−ε

)
ds, in L2(�). (4.3)

(c) For all 0 < t ≤ T and φ,ψ ∈ Cκ([0, T ]) with ακ + H > 1/2,

E
W
[∫ t

0
W (ds, φs)

∫ t

0
W (ds, ψs)

]

= E
Y,B̂
[∫ t

0
Y (φs)d B̂s

∫ t

0
Y (ψs)d B̂s

]

.

(4.4)

Proof Since Q is a covariance function, one can find such a Gaussian process Y such
that part (a) holds. As for (b), by (H1), we see that

E
[|Y (φt ) − Y (φs)|p] ≤ C pE

[
|Y (φt ) − Y (φs)|2

]p/2

≤ C ′
p |φt − φs |αp ≤ C ′

p ||φ||κ |t − s|ακp . (4.5)

Hence, t 	→ Y (φt ) is γ -Hölder continuous for all γ < ακ . Since ακ > 1/2 − H ,
one can find γ ′ such that 1/2 − H < γ ′ < ακ . Because Y and B̂ are independent,
for each realization of Y , the integral

∫ t
0 Y (φs)d B̂s is actually a Wiener integral. By

(4.2), we see that the integral
∫ t
0 Y (φs)d B̂s is a well-defined Wiener integral for each

realization of Y .
As for (4.3), denote

It,ε(φ) := 1

2ε

∫ t

0
Y (φs)

(
B̂s+ε − B̂s−ε

)
ds.
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Then by the same arguments as in the proof of Theorem 2.2, one can show that It,εn (φ)

is a Cauchy sequence in L2(�) for every sequence εn ↓ 0. We omit the details of this
proof. Denote the limit, which does not depend on the sequence, by It (φ). In order to
show that It (φ) equals to the left-hand side of (4.3), it suffices to show that for any
t0 ∈ [0, t] and any bounded random variable Z measurable with respect to the process
Y , we have that

E

[

B̂t0 Z
∫ t

0
Y (φs)d B̂s

]

= E
[
B̂t0 Z It (φ)

]
. (4.6)

For the right-hand side of (4.6), we can write

E
[
B̂t0 Z It (φ)

] = lim
ε→0

1

2ε

∫ t

0
E[ZY (φs)](RH (t0, s + ε) − RH (t0, s − ε))ds

= 2H
∫ t

0
E[ZY (φs)](s2H−1 + |t0 − s|2H−1sign(t0 − s))ds. (4.7)

On the other hand, by Fubini’s theorem, the left-hand side of (4.6) equals to

E
B̂
[

B̂t0

∫ t

0
E

Y [ZY (φs)]d B̂s

]

,

which coincides with (4.7), due to the properties of stochastic Y -integrals. In fact, this
property holds whenE[ZY (φs)] is a step function and it holds for any element in space
Ht (see 4.1) of integrable functions on [0, t], because Ht is continuously embedded
into L1/H (0, t).

As for (c), because Y and B̂ are independent, by (4.3), we see that

E
Y,B̂
[ ∫ t

0
Y (φs)d B̂s

∫ t

0
Y (ψs)d B̂s

]

= lim
ε→0

E
Y,B̂
[∫ t

0
Y (φs)

B̂s+ε − B̂s−ε

2ε
ds
∫ t

0
Y (ψs)

B̂s+ε − B̂s−ε

2ε
ds

]

= lim
ε→0

∫ t

0

∫ t

0
Q (φu, ψv) V 2H

ε,ε (u − v)dudv, (4.8)

where V 2H
ε,δ (·) is defined in (2.10). The limit in (4.8) has been calculated in Theorem

2.2 and it is equal to the right-hand side of (2.2) or (2.6). This completes the proof of
the lemma. �
Lemma 4.3 Assume that {B̂s, s ≥ 0} is a fractional Brownian motion with H ∈
(0, 1/2). Then there exists a constant θ := θ(H, r) such that for all a > 0 and all
r > 0, it holds that

E

(∣
∣
∣
∣

∫ a

0
f (s)d B̂s

∣
∣
∣
∣

r)

≥ θ || f ||rL1/H (0,a)
for all f ∈ Ha . (4.9)
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Moreover, if f (s) is a process with values in a separable Hilbert space V , one can
view f as a two-parameter process: f : [0, a] × D � (s, ω) 	→ f (s, ω) ∈ R. If
f (·, ω) ∈ Ha for all ω ∈ D, then,

E

(∣
∣
∣
∣

∣
∣
∣
∣

∫ a

0
f (s)d B̂s

∣
∣
∣
∣

∣
∣
∣
∣

r

V

)

≥ θ

(∫ a

0
|| f (s)||1/H

V ds

)r H

. (4.10)

Proof Because
∫ a
0 f (s)d B̂s is a centered Gaussian random variable, there exists a

finite constant Cr > 0 such that

E

[∣
∣
∣
∣

∫ a

0
f (s)d B̂s

∣
∣
∣
∣

r]

≥ Cr

(

E

[∣
∣
∣
∣

∫ a

0
f (s)d B̂s

∣
∣
∣
∣

2
])r/2

.

Hence, we only need to prove the case where r = 2.
We first note that (4.9) is proved in part (i) of Theorem 1.2 in [15] for all f that has

bounded variation on [0, a], and in particular, it holds for all simple functions. Now
fix f ∈ Ha . There exist simple functions fn on [0, a] such that || f − fn||Ha

→ 0 as
n → 0. Then

E

[(∫ a

0
f (s)d B̂s

)2
]

= lim
n→∞E

[(∫ a

0
fn(s)d B̂s

)2
]

≥ lim
n→∞ θ

(∫ a

0
| fn(s)|1/Hds

)2H

. (4.11)

Because (4.9) holds for simple functions, we see that

|| fn − fm ||L1/H (0,a) ≤ || fn − fm ||Ha
.

Thus, { fn}n≥1 is aCauchy sequence in L1/H (0, a). Hence, by passing to a subsequence
when necessary, it implies that fn → f almost everywhere. Therefore, (4.9) is proved
by applying Fatou’s lemma to the right-hand side of (4.11).

Now if f (s) is a process with values in a separable Hilbert space V , let {ei }i∈N
be a set of orthonormal basis of V . Since f (·, ω) ∈ Ha for all ω ∈ D, we see that
〈 f (s, ·), ei 〉V ∈ Ha . Hence, by (4.9),

E

(∣
∣
∣
∣

∣
∣
∣
∣

∫ a

0
f (s)d B̂s

∣
∣
∣
∣

∣
∣
∣
∣

2

V

)

= E

⎛

⎝

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

i=1

∫ a

0
〈 f (s), ei 〉V d B̂s ei

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

V

⎞

⎠

=
∞∑

i=1

E

(∣
∣
∣
∣

∫ a

0
〈 f (s), ei 〉V d B̂s

∣
∣
∣
∣

2
)

≥ θ

∞∑

i=1

(∫ a

0

∣
∣
∣〈 f (s), ei 〉2V

∣
∣
∣

1
2H

ds

)2H
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= θ

∞∑

i=1

∣
∣
∣

∣
∣
∣〈 f (s), ei 〉2V

∣
∣
∣

∣
∣
∣
L

1
2H (0,a)

≥ θ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

i=1

〈 f (s), ei 〉2V
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L

1
2H (0,a)

= θ

∣
∣
∣

∣
∣
∣|| f (s)||2V

∣
∣
∣

∣
∣
∣
L

1
2H (0,a)

,

wherewecan applyMinkovski’s inequality in the last inequality because H ∈ (0, 1/2).
This completes the proof of Lemma 4.3. �
Proof of Theorem 4.1 Since u0 is bounded below away from zero, we may assume
that u0 ≡ 1. From (3.2) and by Lemma 4.2, we see that

E

[
u(t, x)k

]
= E

B exp

⎧
⎨

⎩
E

Y,B̂

⎡

⎣

(∫ t

0

k∑

i=1

Y (Bi,x
t−s)d B̂s

)2⎤

⎦

⎫
⎬

⎭
.

Then by (4.5), we see that s 	→ ∑k
i=1 Y (Bi,x

t−s) is γ -Hölder continuous a.s. for all
γ < α/2. Since α/2 > 1/2 − H , one can find γ ′ such that 1/2 − H < γ ′ < α/2.
Hence, by (4.2), s 	→ ∑k

i=1 Y (Bi,x
t−s) is in Ht for all realizations of Y . Therefore, by

Lemma 4.3, for some constant C ′
H > 0,

E
Y,B̂

⎡

⎣

(∫ t

0

k∑

i=1

Y
(

Bi,x
t−s

)
d B̂s

)2⎤

⎦ ≥ C ′
H

⎛

⎜
⎝

∫ t

0
E

Y

⎡

⎣

∣
∣
∣
∣
∣

k∑

i=1

Y
(

Bi,x
s

)
∣
∣
∣
∣
∣

2⎤

⎦

1
2H

ds

⎞

⎟
⎠

2H

= C ′
H It ,

where

It :=
⎛

⎜
⎝

∫ t

0

⎡

⎣
k∑

i, j=1

Q
(

Bi,x
s , B j,x

s

)
⎤

⎦

1
2H

ds

⎞

⎟
⎠

2H

.

Then for any M > 0 (to be chosen later), by condition (H2) and by writing Bi,x
s =

(Bi,x1,1
s , . . . , Bi,xd ,d

s ),

E

[
u(t, x)k

]
≥ E

B exp
(
C ′

H It
)

≥ P

(∣
∣
∣B

i,x j , j
s

∣
∣
∣ > M, ∀s ∈ [t/2, t], ∀i = 1, . . . , k, ∀ j

= 1, . . . , d ) exp
(

CH k2M2β t2H
)

≥ P

(∣
∣
∣B

1,y,1
s

∣
∣
∣ > M, ∀s ∈ [t/2, t]

)kd
exp

(
CH k2M2β t2H

)
,
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where CH = C ′
H C2 and

y = min
i=1,...,d

|xi |.

In the following, for simplicity, we use Bt to denote the one-dimensional standard
Brownian motion starting from the origin. Hence,

E

[
u(t, x)k

]
≥ P (|Bs + y| > M, ∀s ∈ [t/2, t])kd exp

(
CH k2M2β t2H

)
.

Assume that M ≥ |y|. Then

P (|Bs + y| > M, ∀s ∈ [t/2, t]) ≥ P (|Bs | > 2M, ∀s ∈ [t/2, t])
≥ P

(

|Bs | >
2M√

t
, ∀s ∈ [1/2, 1]

)

≥ P

(

|B1/2| >
4M√

t
, |Bs − B1/2| <

2M√
t
, ∀s ∈ [1/2, 1]

)

= P

(

|B1/2| >
4M√

t

)

P

(

sup
s∈[0,1/2]

|Bs | <
2M√

t

)

,

where we have used the scaling property of the Brownian motion. By a standard
argument

P (B1 > r)2 ≥ 1

2π

∫ π/2

0
dθ
∫ ∞

√
2r

e− s2
2 sds = 1

4
e−r2 , (r > 0)

we have that

P

(

|B1/2| >
4M√

t

)

≥ P

(

B1 >
4
√
2M√
t

)

≥ 2−1 exp

(

−16M2

t

)

.

By Chebyshev’s inequality and Fernique’s theorem, for some λ > 0,

P

(

sup
s∈[0,1/2]

|Bs | <
2M√

t

)

= 1 − P

(

sup
s∈[0,1/2]

|Bs | >
2M√

t

)

≥ 1 − Cλe−4λM2/t ,

where Cλ = E exp
(
λ sups∈[0,1/2] |Bs |2

)
< ∞. Now assume that M/

√
t is sufficiently

large such that

(
1 − Cλe−4λM2/t

)kd ≥ 1/2. (4.12)
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Therefore, provided that M ≥ |y| and (4.12) is true, we have that

E

[
u(t, x)k

]
≥ 2−(kd+1) exp

(

CH k2M2β t2H − 16k M2d

t

)

. (4.13)

Now we maximize

f (M) = CH k2M2β t2H − 16k M2d

t
, for M ≥ 0.

By solving f ′(M) = 0, we see that f is maximized at

M0 =
(
(16d)−1β k CH t1+2H

) 1
2(1−β)

with

sup
M≥0

f (M) = f (M0) = (16d)
β

β−1 (1 − β)β
β

1−β C
1

1−β

H k
2−β
1−β t

β+2H
1−β . (4.14)

Now we consider three cases. In the first case, we fix an arbitrary t ≥ 1. By replacing
t in the expression of M0 by 1, we see that there exists some k0(x) ∈ N such that
for all k ≥ k0(x), both conditions (4.12) (with M replaced by M0) and M0 ≥ |y| are
satisfied. Hence, the equality in (4.14) is valid. The second case is similar to the first
one: Fix an arbitrary k ∈ N. By replacing k in the expression of M0 by 1, we see that
for some t0(x) > 0, both conditions (4.12) (with M replaced by M0) and M0 ≥ |y|
are satisfied for all t ≥ t0(x). Hence, the equality in (4.14) is valid. Finally, in the third
case, we fix t ∈ [1, t0(x)] and 1 ≤ k ≤ k0(x). Set

C := (16d)
β

β−1 (1 − β)β
β

1−β C
1

1−β

H .

By the arguments leading to (4.13) and replacing M by |y|, we see that

E

[
u(t, x)k

]
≥ 2−1

(
1 − Cλe−4λy2/t

)kd
exp

(

CH k2y2β t2H − 16ky2d

t

)

≥ 2−1 exp

(

Ck
2−β
1−β t

2H+β
1−β

)

× inf
1≤t≤t0(x)

1≤k≤k0(x)

{(
1 − Cλe−4λy2/t

)kd
exp

(

CH k2y2β t2H − 16ky2d

t

−Ck
2−β
1−β t

2H+β
1−β

)}

=: Cx exp

(

Ck
2−β
1−β t

2H+β
1−β

)

.

This completes the proof of Theorem 4.1. �
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Appendix

Lemma 4.4 For all a, b, u, v, w > 0, if u + v ≤ w + 1/2 and w > 1/2, then

sup
n∈N

�(an + u)�(bn + v)

�((a + b)n + w)
< ∞.

Proof We only need to show that

lim
n→∞

�(an + u)�(bn + v)

�((a + b)n + w)
< ∞.

By Stirling’s formula (see [17, 5.11.3 or 5.11.7]), as n is large, we see that

�(an + u)�(bn + v)

�((a + b)n + w)
≈ √

π exp
{
(an + u − 1/2) log(an)

+ (bn + v − 1/2) log(bn)

− ((a + b)n + w − 1/2) log((a + b)n)
}
.

Denote the right-hand side of the above quantity by In . By the supper-additivity of
f (x) = x log x , namely f (x + y) ≥ f (x) + f (y) for all x, y ≥ 0, we see that

In ≤ √
π exp

{
(u − 1/2) log(an) + (v − 1/2) log(bn) − (w − 1/2) log((a + b)n)

}
.

Becausew > 1/2, we can apply the inequality log((a +b)n) ≥ 1
2 [log(an)+ log(bn)]

to obtain that

In ≤√
π exp

{
(u−1/4−w/2) log a+(v−1/4−w/2) log b+(u+v−w−1/2)log n

}

= Cnu+v−w−1/2≤C, for all n ∈ N,

where the last inequality is due to the assumption that u + v − w − 1/2 ≤ 0. �
Let Eα,β(z) be the Mittag–Leffler function

Eα,β(z) =
∞∑

n=0

zn

�(αn + β)
, �α > 0, β ∈ C, z ∈ C.

Lemma 4.5 (Theorem 1.3 p. 32 in [19]) If 0 < α < 2, β is an arbitrary complex
number and μ is an arbitrary real number such that

πα/2 < μ < π ∧ (πα) ,
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then for an arbitrary integer p ≥ 1 the following expression holds:

Eα,β(z) = 1

α
z(1−β)/α exp

(
z1/α

)

−
p∑

k=1

z−k

�(β − αk)
+ O

(
|z|−1−p

)
, |z| → ∞, | arg(z)| ≤ μ .

Lemma 4.6 For all α > 0 and β ≤ 1, there exists some constant C = Cα,β ≥ 1 such
that

Eα,β(z) ≤ C exp
{

Cz1/α
}

, for all z ≥ 0.

Proof By Lemma 4.5, we see that for some constants C ′
α,β > 0 and Cα,β ≥ 1,

Eα,β(z) ≤ C ′
α,β

(
1 + z(1−β)/α exp

(
z1/α

))
≤ Cα,β exp

(
Cα,β z1/α

)
,

for all z ≥ 0. �
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